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Abstract. The appearance of apparently chaotic behaviour in this two-dimensional system is examined from an 
analytical point of view. The original two-parameter model exhibiting numerical solutions resembling chaos is 
unfolded to a three-parameter model. This enlarged model is shown to have a codimension-two degenerate Hopf 
bifurcation the unfolding of which contains phase portraits showing three concentric limit cycles. 

In some regions these limit cycles are so close to each other that numerical integration causes transitions across 
the unstable limit cycle, giving the appearance of chaotic behaviour. The region in parameter space of the 'chaotic' 
behaviour agrees well with the degenerate behaviour of the enlarged model. 

1. Introduction 

The cubic autocatalator  is a model  reaction scheme which is very simple but at the same t ime 
shows rather  exotic behaviour,  i.e. highly nonlinear periodic behaviour.  I t  was originally 
introduced by Gray  and Scott [1] and has been  discussed in various contexts by a number  of  
authors,  e.g. Gray  and Scott [2], D ' A n n a  e t a l .  [3], and Merkin,  Needham and Scott [4] and 
Gray ,  Rober t s  and Merkin [5]. In  [4] and [5] the scheme has been  used to model  reactions in 
a closed system (i.e. closed to mat te r  transfer),  where the 'pool  chemical approximat ion '  is 
made  [4]. 

In this case the chemical kinetic scheme is 

P --* A ,  rate k o P  , 

A + 2B--* 3 B ,  rate k l a b  2 , 

B --* C ,  rate k 2 b ,  

where P, the original reactant,  is present  in large excess and hence its concentrat ion can be 
taken to be constant in t ime (at its initial value) throughout  the period of  t ime with which we 
are concerned.  

The  differential equations describing this scheme are 

d x / d t =  ~ - x y  2 , (1) 

d y / d t  = x y  z - y ,  (2) 

where x = ( k J k 2 ) l / 2 a ,  y = ( k l / k 2 ) 1 / 2 b  are the dimensionless concentrations of  A and B 

respectively, t = k2 t  is dimensionless t ime (t = time) a n d / ~  = ( k l / k 2 ) t / 2 k o P o / k  2 is a dimen- 
sionless rate constant.  

Merkin,  N eedham  and Scott [4] analysed equations (1), (2), showing in particular the 
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bifurcation of a stable limit cycle a t /z  = 1 and the consequent divergence of the amplitude of 
this limit cycle in the phase plane at /~ = 0.9003. They also studied the effect of the inclusion 
of the uncatalysed reaction 

A---~ B ,  rate k a a ,  

described by the differential equations 

d x / d t  = Ix - x y  2 - rx , (3) 

d y / d t  = x y  2 - y + rx , (4) 

where r = k 3 / k  2. They showed that the system (3), (4) exhibited two Hopf bifurcations, both 
to stable limit cycles at values of/.~ which tend to either 1 or 0 as r---~ 0 § The amplitude of 
the limit cycle is finite over the whole range of/~ for which it exists. This range tends to zero 
as r---~ 1/8 at which point a 'double H o p f  or H2 t, bifurcation occurs (see Gray and Roberts 
[6] for an explanation o f  this notation). 

For sufficiently small values of r, the bifurcation diagram for the system (3), (4) is shown 
in Fig. 1. Although no divergence of amplitude occurs near/~ = 0.9003 there appears to be 
ex t reme  sensitivity o f  both the amplitude and frequency of the oscillation to variation of g.  
The purpose of the present paper is to investigate this phenomenon of a 'canard' [7] by 
unfolding the model (3), (4) further by addition of an extra reaction, which can then be 
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Fig. i. Variation of amplitude A x as a function of/,L, r = 10 -4. 
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allowed to tend to zero. As we shall see this procedure indicates that the 'canard' is in fact a 
genuine discontinuity and that the model (3), (4) shows behaviour characteristic of a 
non-universally unfolded system. 

This particular point can be seen more dearly if we do not make the 'pool chemical 
approximation',  and in fact allow P to be consumed very slowly. The concentration of P is 
not coupled to x and y, and it is simply an exponentially decaying function of time. In 
equations (1), (2), it is replaced by a slowly decreasing function of time: 

d x / d t  = I z  e - ' t  - x y  2 - r x  , (5) 

d y / d t  = x y  2 - y + r x  , (6) 

where e = k o / k  2 (see [4]). For sufficiently small e, numerical integration of these equations is 
akin to plotting a 'quasi-static' bifurcation diagram with /z as the (very slowly varying) 
bifurcation parameter. 

The results are shown in Fig. 2 for r = 10 -5 and e = 10 -s. In Fig. 2a we initially have the 
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Fig. 2. Amplitude of oscillation A x as a function of time, r = 10 -5, e = 10 -s. (a)/~ = 0.90032. (b)/z = 0.90023. 



286 B.F. Gray and R.A. Thuraisingham 

'Hopf  oscillations', fitting reasonably to the Hopf  amplitude formula. The origin corresponds 
to /~  = 0.90032. Before  p. = 0.90028 is reached, qualitatively different oscillations appear  in a 
'chaotic' manner.  As p~ decreases further they gradually displace the small oscillations until 
a t / z  = 0.90018 they have taken over completely. The range of/~ for which this phenomenon 
occurs is extremely small and dependent  on r. For  r = 10 -4 the two equations (3) and (4) 
have been integrated numerically for p, = 0.899870. In Fig. 3a the apparently chaotically 
mixed oscillations are still present. In Fig. 3b the phase portrait  for this case throws 
considerable light on the numerical results. There  appear to be two stable limit cycles (and 
clearly at least one unstable one between) which are extremely close together along two very 
significant segments, i.e. the two axes x = 0, y = 0, apart from close to the origin. Manipula- 
tion of our  parameters  of numerical integration did not influence our results, nor  did use of 
either Gear  or Runge -Ku t t a  techniques. 
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Fig. 3(a). A m p l i t u d e  o f  o sc i l l a t i on  A x as  a f u n c t i o n  o f  t i m e / ~  = 0 .899870 ,  r = 10 -4. 
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Fig. 3(b) .  P h a s e  p o r t r a i t  Y vs. X for / ,~  = 0 .899870 ,  r = 10-*. 
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Certainly the equations in question (3 and 4) cannot exhibit chaotic behaviour although 
their difference counterparts can and certainly do. In the next section we enlarge the 
reaction scheme to provide a third parameter which shows the existence of a degenerate 
singularity containing in its universal unfolding a phase portrait containing three limit cycles 
surrounding an unstable singularity. 

2. The unfolded model  

We add to the original reaction scheme a further chemical reaction, the decomposition of A 
directly to some inert product: 

A--) D ,  rate k4a , 

so the generalised differential equations we consider are 

d x / d t  = I~ - x y  2 - (Ol + r ) x  , 

d y / d t  = x y  2 - y + rx  , 

(7) 

(8) 

where a = k 4 / k  2. These equations, containing the bifurcation parameter/z and two unfold- 
ing parameters a, r, are treated here by the methods outlined in Gray and Roberts [6] which 
are capable of giving complete qualitative information on the bifurcation diagrams and phase 
portraits arising from (7), (8). However, this technique needs numerical backup in cases 
such as the present one. For example, we show that the system (7), (8) must exhibit a phase 
portrait containing three limit cycles surrounding an unstable singularity, but we cannot show 
that this region intersects the ot = 0 axis in parameter space without numerical integration. 

The singularities of equations (7) and (8) are defined by 

2 
tz - x~y ,  - ( a  + r ) G  = O,  

2 
x ,y~  - y ~  + r G = 0,  

(9) 

(10) 

and it is clear that there may be up to three solutions of these equations for some parameter 
values, so an investigation of steady-state bifurcations is necessary in addition to study of the 
dynamic bifurcations already referred to. The locus of saddle-node bifurcations can be 
conveniently parametrised by x s in the form 

a ( a x ~  - 1) 
r = ( 2 a x ~  - 1): ' (11) 

2 3 
2a x s 

I.~ = ( 2 a x ~  - 1) " (12) 

Since r, t~, a > 0 we impose xs > 1/v"& These codimension-zero bifurcations can degenerate 
to a codimension-one bifurcation of hysteresis type, with defining conditions [6] 

d_._x.x = d..!.y _ d~ d:/z 
- = = 0 ,  ( 1 3 )  

dt dt dx s dx 2 
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where IX and y, are regarded as functions of x s. From (13), some algebra gives us 

r =  a / 8  (14) 

as the locus of the hysteresis bifurcation in the codimension-one (r, or) plane. (N.B. the 
lower-codimension saddle-node locus is best represented in projection in a codimension-zero 
plane, either (/z, r) or (IX, t~). Alternatively it can be regarded as a surface in (Ix, r, or) 
space, and the hysteresis locus regarded as a curve in this space. We prefer the former 
interpretation for ease of presentation.) There are no more highly degenerate steady-state 
bifurcations in this model. 

Nondegenerate Hopf bifurcations are defined by equations (9) and (10) together with 

tr J =  0 ,  det J > 0 ,  (15) 

where J is the Jacobian matrix for the system (7) and (8). This bifurcation can also be 
parametrised by x,,  and for any given ot > 0 we can write 

(a + 1)[(1 - a)x~ - 1] (16) 
r =  ( 2 x ~ -  1) 2 ' 

x~(2ax~ + 1) (17) 
IX- ( 2 x ~ - l )  ' 

with the physical restriction x~ > (1 - a)-1/21 > a > 0. Note that the representation (16) and 
(17) does not take account of the sign of det J. 

Degenerate Hopf  bifurcations of codimension one are of two types, H21 and H3a. The H21 
type is defined by equations (9), (10), (15) and 

d 
dix (tr J)  = 0.  (18) 

These conditions can be reduced explicitly, after a little algebra, to 

( l - a )  2 ( d e t J > 0 )  (19) 
r =  T 

For H31-type degenerate Hopf bifurcations (where the limit cycle concerned changes 
stability) equation (18) is replaced by the condition 

A x  6 + Bx 4 + Cx~ + O = 0  (20) 

where the coefficients A,  B, C and D are coefficients of a only. Their actual form is rather 
complex and can be obtained from Gobber and Willamowski [8]. In order to locate the H31 
curve in (r, a)  space it is thus necessary for each value of a in 0 < a < 1 to solve equation 
(20) for x~ and then substitute this into equations (16) and (17) to find r and then IX. 

Codimension-two bifurcations, the most degenerate ones possible in this system, if they 
occur, will appear on a codimension-one curve in the (r, a)  plane. The only one occurring in 
this system turns out to be one of the H32 variety, and this occurs on the H31 curve. These 
points are located by evaluating the function P6 of Gobber and Willamowski [8]. One point 
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of this type occurs in the physical quadrant of parameter space, and a second, on the same 
branch of the H31 curve, occurs for negative a and r. 

It is worth anticipating the discussion and remarking here that the unfolding of the H32 
point contains phase portraits showing three concentric limit cycles, giving some hope that 
the inclusion of ot = 0 in the model might be sufficient to throw light on the computed results 
discussed in the introduction. 

The final part of the analysis involves looking at the possibility of the interaction of static 
and dynamic bifurcations, i.e. loci where 

tr J = O, det J = 0 (21) 

are satisfied simultaneously. Equations (2i) imply that the Jacobian matrix has two zero 
eigenvalues and we refer to this case as the DZE (double zero eigenvalue) bifurcation. 
Following Gray and Roberts [6] we refer to the simplest of these bifurcations as the 
saddle-node-Hopf (Sn-H) degeneracy. Using equations (21) along with equations (9) and 
(10) we can obtain the following explicit form for the Sn-H degeneracy: 

a 2 ( 1 -  2a) O < o t <  �89 . (22) 
r = 2 ( 1 -  a) 2 ' 

It is possible to show that the hysteresis curve is tangential to the Sn-H curve and also that 
the lower of the two branch H31 curves meets the Sn-H curve at this point of tangency. One 
can also show that the H21 curve and the upper branch of the H31 curve meet the Sn-H 
curve at the same point. 

Both of these points are examples of more highly degenerate DZE bifurcations (of 
codimension 2). We are not aware of any rigorous analysis of the unfoldings of these 
degeneracies along the lines of Guckenheimer and Holmes [9] for the nondegenerate DZE, 
but they have been unfolded by plausible path-consistency arguments [6]. 

We cannot obtain further information about the location of the various bifurcation loci in 
parameter space without numerical integration of the differential equations. Without the 
qualitative analysis given above and in more detail in [6] such a task would be almost 
impossible since many of the curves in parameter space lie extremely close together giving 
regions in parameter space which are sometimes extremely small. This seems to be 
particularly the case for regions which have the most exotic phase portraits. 

3. The quantitative results 

The bifurcation loci in the (/, ,  at) plane differ in a quantitative but important way from the 
predictions made in [5]. In Fig. 4, for the particular value of r = 10 -4 we show the 
saddle-node loci, the loci of tr J = 0 (representing Hopf bifurcation if det J > 0) and the two 
points on it where H31 degenerate Hopf bifurcations occur. The intersection of the two 
saddle-node bifurcation loci is the point of hysteresis bifurcation. 

As shown in [6] from each point of intersection of Hopf and saddle-node bifurcation loci 
there must emanate a homoclinic bifurcation locus and from each H31 degeneracy there must 
emanate a locus representing a periodic orbit bifurcation locus (where stable and unstable 
limit cycles coincide and then disappear). Both these loci are non-local (i.e. they are not 
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Fig. 4. (a, it) plo t  for  smal l  r (see [5]). 

% 

simply related to the singularities of the system) and can only be obtained by numerical 
integration of the differential equations. 

They are shown in Fig. 5 in detail. The important point for the present paper is that the 
region G is not in fact entirely contained inside the two saddle-node bifurcation loci as 
previously assumed [5]. It crosses the upper saddle-node bifurcation locus and creates a new 
region M in the / z - a  plane in which the phase portrait is simply three concentric limit 
cycles around an unstable singularity. Not only does this region exist, it also intersects the 
a = 0 axis and persists for small negative (but unphysical) values of a. The width of this 
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Fig. 5. Modi f i ed  ( a , / x )  p lo t  for  r = 10 -4. 
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Fig. 6. Modified (r, a) diagram, showing regions of qualitatively distinct bifurcation diagrams. 

intersection with the a = 0 axis corresponds to the region within which numerical integration 
of the equations (3) and (4) shows the 'chaotically mixed' oscillations of the earlier figures. 

The existence of the intersection of region M with the axis a -- 0 has repercussions on the 
behaviour of the system for all values of r. This is shown in Fig. 6 in which the 
codimension-one (a, r) plot is given. This also differs quantitatively from the plot given in [5] 
which represents only the s i m p l e s t  self-consistent possibility for this system. The numerical 
work reported here shows that this 'simplest possible' behaviour is not realised, and in fact 
the actual (a, r) diagram gives rise to five extra bifurcation diagrams compared with the 
'simplest possible' behaviour. 

These are shown in Fig. 7 along with the most closely related bifurcation diagrams already 
known to necessarily exist for this system from the 'simplest possible' treatment reported in 
[5]. In spite of this, only one extra phase portrait (three concentric limit cycles around an 
unstable singularity) occurs above and beyond the 'simplest possible' case. 

4. Conclusions 

The cubic autocatalator model for a closed system, represented by the equations 

d x / d t  = i~ - x y  2 - r x  , (3) 
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Fig. 7. Additional bifurcation diagrams associated with modifications shown in Fig. 6. 

d y / d t  = x y  2 - y + r x  , (4) 

can show two distinct periodic solutions coexisting at the same parameter values in a small 
but well-defined region of parameter space. This behaviour implies the existence of at least 
two stable limit cycles and an unstable one, all surrounding the only (unstable) singularity. 
This behaviour, characteristic of the unfolding of a degenerate Hopf bifurcation of codimen- 
sion 2, indicates that enlargement of the model to two unfolding parameters would lead to 
the occurrence of a degenerate singularity of H3 2 type. 

The unfolding considered here, 

d x  / d t  = tx  - x y  2 - r x  - a ,  (7) 

d y / d t  = x y  2 - y + r x  , (8) 

does indeed exhibit a singularity of this type and furthermore the region in parameter space 
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within which three concentric limit cycles exists does in fact cross the axis a = 0. Inside this 
region apparently chaotically mixed oscillations are exhibited by the computer, confirming 
our interpretation of these for the original case a -- 0. For the unfolded model this 'chaotic' 
behaviour does in fact exist in a region of parameter space with the H32 singularity on its 
edge. 

The phase portrait in Fig. 3b shows the existence of two limit cycles very close together in 
a certain region. Numerically this is responsible for the chaotic behaviour that was observed. 
It is possible, however, that for fixed /x by applying a suitable small perturbation in y 
whenever x becomes close to zero, one can get either the large or the small limit cycle. Such 
type of calculations indicate for /z > 1.0, a = 0 and for r small (= 10 -4) that instead of a 
single stable steady state, we could have a stable steady state surrounded by two limit cycles, 
one stable and the other unstable which are close together in a certain region. In this case we 
would not expect mixed oscillations but a large 'excursion' around the stable limit cycle 
before capture by the attractor. We cannot say whether this behaviour is due to two limit 
cycles passing very close to the attractor or not. 
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